Research Publications

Peer-reviewed international scientific journal articles

Selected Publications

A neuro-inspired artificial peripheral nervous system for scalable electronic skins 

Wang Wei Lee, Yu Jun Tan, Haicheng Yao, Si Li, Hian Hian See, Matthew Hon, Kian Ann Ng, Betty Xiong, John S. Ho and Benjamin C.-K. Tee*

Science Robotics, 2019 (Selected as Cover)

The human sense of touch is essential for dexterous tool usage, spatial awareness, and social communication. Equipping intelligent human-like androids and prosthetics with electronic skins—a large array of sensors spatially distributed and capable of rapid somatosensory perception—will enable them to work collaboratively and naturally with humans to manipulate objects in unstructured living environments. Previously reported tactile-sensitive electronic skins largely transmit the tactile information from sensors serially, resulting in readout latency bottlenecks and complex wiring as the number of sensors increases. Here, we introduce the Asynchronously Coded Electronic Skin (ACES)—a neuromimetic architecture that enables simultaneous transmission of thermotactile information while maintaining exceptionally low readout latencies, even with array sizes beyond 10,000 sensors. We anticipate that the ACES platform can be integrated with a wide range of skin-like sensors for artificial intelligence (AI)–enhanced autonomous robots, neuroprosthetics, and neuromorphic computing hardware for dexterous object manipulation and somatosensory perception.



Self-healing Electronic skins for Aquatic Environments

Yue Cao, Yu Jun Tan, Si Li, Wang Wei Lee, Hongchen Guo, Yongqing Cai, Chao Wang, Benjamin C.-K. Tee*

Nature Electronics, 2019 (Selected as Cover)

Here we report a bio-inspired skin-like material that is transparent, electrically conductive and can autonomously self-heal in both dry and wet conditions. The material, which is composed of a fluorocarbon elastomer and a fluorine-rich ionic liquid, has an ionic conductivity that can be tuned to as high as 10e-3 S/cm and can withstand strains as high as 2,000%. Owing to ion–dipole interactions, it offers fast and repeatable electro-mechanical self-healing in wet, acidic and alkali environments. To illustrate the potential applications of the approach, we used our electronic skins to create touch, pressure and strain sensors. We also show that the material can be printed into soft and pliable ionic circuit boards.

Highlighted in News and Views article: 

Soft circuits that self-heal under water, C. Majidi


Self-Healing Electronic Materials for a Smart and Sustainable Future

Yu Jun Tan, Jiake Wu, Hanying Li, Benjamin C-K. Tee*

ACS Appl. Mater. & Interfaces, 2018

The survivability of living organisms relies critically on their ability to self-heal from damage in unpredictable situations and environmental variability. Such abilities are most important in external facing organs such as the mammalian skin. However, the properties of bulk elemental materials are typically unable to perform self-repair. Consequently, most conventional smart electronic devices today are not designed to repair themselves when damaged. Thus, inspired by the remarkable capability of self-healing in natural systems, smart self-healing materials are being intensively researched to mimic natural systems to have the ability to partially or completely self-repair damages inflicted on them. This exciting area of research could potentially power a sustainable and smart future.


A skin-inspired organic digital mechanoreceptor

Benjamin C-K Tee*, A Chortos*, A Berndt*, A K Nguyen, A Tom, A McGuire, Z C Lin, K Tien, W G Bae, H Wang, P Mei, H H Chou, B Cui, K Deisseroth, T N Ng, and Z Bao
Science, 350, 313–316, 2015 (*equal contribution)

Featured on

An electrically and mechanically self-healing composite with pressure- and flexion-sensitive properties for electronic skin applications

B. C-K. Tee*, Chao Wang*, R. Allen, and Z. Bao
Nature Nanotechnology 7, 1–8, 2012

Featured on:

Continuous wireless pressure monitoring and mapping with ultra-small passive sensors for health monitoring and critical care

Lisa Y Chen*, Benjamin C-K. Tee*, A. Chortos, G. Schwartz, V. Tse, D. J Lipomi, H S P. Wong, M. V McConnell and Z. Bao
Nature Communications, 5 , 1–10, 2014 (*equal contribution)

Tunable Flexible Pressure Sensors using Microstructured Elastomer Geometries for Intuitive Electronics

B. C-K. Tee, A. Chortos, R. R Dunn, G. Schwartz, E. Eason and Z. Bao,
 Adv. Funct. Mater. 24, 5427–5434, 2014

Shape-Controlled, Self-Wrapped Carbon Nanotube 3D Electronics

H. Wang, Y. Wang, Benjamin C-K. Tee, K. Kim, J. Lopez, W. Cai, and Z. Bao Shape-Controlled, Self-Wrapped Carbon Nanotube 3D Electronics.
Adv. Science. 2, 2015

25th Anniversary Article: The Evolution of Electronic Skin (E-Skin): A Brief History, Design Considerations, and Recent Progress

M. Hammock, A. Chortos, B. C-K. Tee, J. B.-H. Tok, and Z. Bao,
Advanced Materials 25, 5997–6038, 2013

Flexible polymer transistors with high pressure sensitivity for application in electronic skin and health monitoring

G. Schwartz, B. C-K. Tee, J. Mei, A. L Appleton, D. H. Kim, H. Wang, and Z. Bao, Nature Communications 4, 1859–8, 2013

Solution coating of large-area organic semiconductor thin films with aligned single-crystalline domains

Y. Diao, B. CK Tee, G. Giri, Jie Xu, H. A Becerril, R. M. Stoltenberg, T. Lee, G. Xue, S. CB Mannsfeld and Z. Bao,
Nature Materials 12, 665, 2013

Featured on cover of Nature Materials

Featured on cover of Nature Materials

Skin-Like Sensors of Pressure and Strain Enabled by Transparent, Elastic Films of Carbon Nanotubes

D.J. Lipomi*, M. Vosgueritchian*, B. C-K. Tee*, et. al.,
Nature Nanotechnology 6, 788-792, 2011

Highly sensitive flexible pressure sensors with micro-structured rubber dielectric layers

S.C. B. Mannsfeld, B. C-K. Tee, R. M. Stoltenberg, C. V. H-H. Chen, S. Barman, B. V. O. Muir, A. N. Sokolov, C. Reese & Z. Bao,
Nature Materials 9, 859–864, 2010